import json
from typing import Dict
import boto3
from langchain.chains.question_answering import load_qa_chain
from langchain_aws.llms import SagemakerEndpoint
from langchain_aws.llms.sagemaker_endpoint import LLMContentHandler
from langchain_core.prompts import PromptTemplate
query = """How long was Elizabeth hospitalized?
"""
prompt_template = """Use the following pieces of context to answer the question at the end.
{context}
Question: {question}
Answer:"""
PROMPT = PromptTemplate(
template=prompt_template, input_variables=["context", "question"]
)
roleARN = "arn:aws:iam::123456789:role/cross-account-role"
sts_client = boto3.client("sts")
response = sts_client.assume_role(
RoleArn=roleARN, RoleSessionName="CrossAccountSession"
)
client = boto3.client(
"sagemaker-runtime",
region_name="us-west-2",
aws_access_key_id=response["Credentials"]["AccessKeyId"],
aws_secret_access_key=response["Credentials"]["SecretAccessKey"],
aws_session_token=response["Credentials"]["SessionToken"],
)
class ContentHandler(LLMContentHandler):
content_type = "application/json"
accepts = "application/json"
def transform_input(self, prompt: str, model_kwargs: Dict) -> bytes:
input_str = json.dumps({"inputs": prompt, "parameters": model_kwargs})
return input_str.encode("utf-8")
def transform_output(self, output: bytes) -> str:
response_json = json.loads(output.read().decode("utf-8"))
return response_json[0]["generated_text"]
content_handler = ContentHandler()
chain = load_qa_chain(
llm=SagemakerEndpoint(
endpoint_name="endpoint-name",
client=client,
model_kwargs={"temperature": 1e-10},
content_handler=content_handler,
),
prompt=PROMPT,
)
chain({"input_documents": docs, "question": query}, return_only_outputs=True)